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Ray theory is used to investigate the interaction of a short high-frequency progressive 
internal wave of infinitesimal amplitude with a long progressive near-inertial wave 
of arbitrary amplitude. Weak-interaction theory would, if applicable, predict that 
the largest changes in short-wave properties occur when the resonance condition 
c = cg is satisfied, where c is the phase velocity of the long wave and cg is the group 
velocity of the short wave. The present calculation confirms this prediction only when 
the long wave has exceedingly small amplitude (peak velocities of order 0.1 cm/s). 

However, when the background velocity has a realistic amplitude (e.g. oceanic 
values are of order 20 cm/s) the resonance condition fails to be relevant. For example, 
waves which initially have c = cg become trapped in low-shear regions and 
consequently experience very small changes in wavenumber. Other short waves, 
which initially have cg 4 c and hence violate the resonance condition, exhibit large 
and permanent changes in vertical wavenumber. 

Remarkably, it is found that these permanent changes are much more likely to 
be decreases, rather than increases, in wavenumber. This can be explained as follows. 
Short waves which enter an inertial-wave packet experience both increases and 
decreases in wavenumber. However, at times when the wavenumber is relatively 
large, the group velocity is relatively small and the short wave is unlikely to escape 
from the inertial packet, whereas small wavenumber and large group velocity assist 
the escape of the short-wave group. Consequently the short waves that leave the 
inertial packet tend to have a smaller average wavenumber than those that enter. 
Thus the net effect of a near-inertial packet on a collection of short waves appears 
to be an increase in vertical wavelength and frequency. 

1. Introduction 
Near-inertial motions can strongly influence the propagation of internal waves of 

high frequency and short wavelength. The aim of this paper is to examine this 
interaction with a simple model. We consider the refraction, distortion, and amplifi- 
cation of a high-frequency, short-wavelength internal wave of infinitesimal amplitude 
(the ‘test wave’) by the velocity field of a single progressive wave of near-inertial 
frequency and arbitrary amplitude (the ‘ background wave ’). Numerical and analytical 
solutions from ray theory form the basis of our approach. 
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Descriptive studies of the oceanic internal wave field characterize it as a quasi- 
continuous spectrum consisting of a random superposition of waves (e.g. Munk 1981). 
Correspondingly, many theoretical studies have been directed at  predicting spectral 
properties using statistical closure methods (e.g. Olbers 1976 ; McComas & Bretherton 
1977; Pomphrey, Meiss & Watson 1980; Meiss & Watson 1982). With the exception 
of Meiss & Watson (1982), the interacting waves in these studies are all assumed to 
have small amplitude. This is usually referred to as weak-interaction theory. 

This paper adopts a different point of view in that it focuses on the particular 
interaction event described above, in which the near-inertial wave has finite 
amplitude. Despite the idealization involved in restricting attention to two waves, 
there are several reasons for pursuing this approach. 

First, observations by Pinkel (1983) of the internal wavefield in the upper ocean 
(the first few hundred metres) show that near-inertial motions are vigorous. Moreover, 
only a few near-inertial-wave groups are present a t  any one time. T. B. Sanford 
(personal communication) has remarked that all of his upper-ocean Atlantic profiles, 
and most of his Pacific ones, are dominated by groups of downward-propagating 
inertial waves. If these measurements are representative of the upper ocean then in 
this region a continuous spectrum is as much an idealization as the model proposed 
here. In  any case the present study provides some insight into how a downward- 
propagating group of near-inertial waves affects pre-existing smaller-scale waves. 

Second, interest lies in understanding how the concept of an internal-wave critical 
layer (Booker & Bretherton 1967) is modified when the background flow is unsteady, 
in particular when it oscillates on inertial timescales. For the present model the 
vertical wavenumber of the test wave always remains bounded. In  this sense 
critical-layer interactions do not occur. Nevertheless, it  is possible for the wave action 
to become very large, and to do so at places and times which differ from those that 
would be predicted by a naive application of critical-layer theory. 

Third, the idealization permits analytic results to be obtained, which serve to check 
the numerical solutions and enable a certain portion of parameter space to be 
surveyed. The analysis thus provides a convenient reference point for understanding 
the results of numerical simulations with different backgrounds, such as those of 
Broutman (1984) and Henyey & Pomphrey (1983). 

A fourth motivation is the need to understand the limitations of weak-interaction 
theory, which has so far been the principal theoretical tool for studying nonlinearly 
interacting internal waves. The limitations have already been discussed by Holloway 
(1980, 1982). Here we can study the way in which weak-interaction theory breaks 
down by explicit illustration of some of the phenomena that accompany the 
breakdown. Our solutions also suggest an alternative view of transport through 
wavenumber space in the strong-interaction limit. 

For instance, in the weak-interaction limit the induced-diffusion approximation 
(McComas & Bretherton 1977) yields the following prediction: the short wave 
interacts most strongly with the background, itself assumed weak, when 

cg = c, (1.1) 

where cg is the vertical group velocity of the short wave and c is the phase velocity 
of the near-inertial wave. Physically, the interaction is most effective (for a 
sufficiently weak background) because a group of short waves is refracted by a shear 
that is approximately steady in its frame of reference. One of our principal conclusions 
is that (1.1) is not a reliable guide to which interactions are important, unless the 
background shear is unrealistically weak. 
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Indeed, the induced-diffusion mechanism, and other long-wave-short-wave inter- 
actions that can be described with weak-interaction theory, are generally obtained 
by assuming that the long wave, as well as the short wave, have sufficiently small 
amplitude. The ray approach used here is in some ways less restrictive: it permits 
stronger and more realistic shears (consistent with values measured in the ocean) in 
the velocity field of the long wave. Our strong shear solutions suggest a very different 
transport mechanism through wavenumber space, which has implications for our 
understanding of naturally occurring internal wavefields. 

2. Ray solutions for an infinite progressive near-inertial wave 
We consider a group of short internal waves propagating through a single 

progressive near-inertial wave. The choice of near-inertial frequency for the back- 
ground wave simplifies the analysis: the ratio of horizontal to vertical wavelength 
is large for near-inertial motions so that the inertial current is approximately 
horizontal, circularly polarized, and independent of the horizontal coordinates. 

If 7 denotes some property of the test wave (e.g. vertical displacement) then in 
the ray-theory approximation 

7 = a ei*, (2.1) 

where a(x ,  t )  is a local amplitude and 8(x, t )  is a phase function. The local wavenumber 
k and frequency w are defined in terms of the wave phase by 

with 

as 
k = ve, w =-- 

at , 

i3k - + v w  = 0. 
at 

In  a moving medium where the local velocity is u, w and k are related by 

w = u*k+cj(k), (2.4) 
where 4 is the intrinsic frequency, which satisfies the internal-wave dispersion 
relation 

N2k2+f2m2 
k2+m2 

0 2  = 

The axes are aligned so that k = (k, 0 ,  m).  In (2.5) N and f are the buoyancy and 
inertial frequencies respectively, assumed to be constant in the present study. The 
sign convection we adopt is that c j  is positive while wavenumbers may have either 
sign. For example, waves with negative vertical wavenumbers have negative vertical 
phase velocities but positive vertical group velocities. 

The amplitude a is determined from action conservation: 

aA 
- + V . [ ( U + C ~ ) A ]  at = 0, 

where cg is the group velocity, 

c B =[g,O,g], 
A is the action density, 

A = El&, 



344 D.  Broutman and W .  R .  Young 

and E is the intrinsic energy density. E is related to the amplitude of the vertical 
displacement field by 

E = +poNPa2[l+(&y],  

where po is the mean density. 

2.1. Solutions of (2 .3)  and (2.6) which are steady in the inertial-wave reference frame 

Suppose that the velocity field of the background inertial wave has the form 

u = [ u ( z - c t ) ,  v(z-ct) ,  01, (2.10) 

where c is the phase velocity. In the numerical calculations below we use a special 
case of (2.10): 

u = u,[cosb(z-ct), -sinb(z-ct), 01, (2.1 1) 

i.e. a circularly polarized, vertically progressive inertial wave with vertical wave- 
number b.  Because the frequency of this background wave is near the inertial fre- 
quency, we have 

c x f/b. (2.12) 

In much of the theoretical discussion below, it is simpler and more general to use 
(2.10), while (2.1 1 )  is used in the numerical calculations. 

A general class of solutions of (2 .3)  and (2 .6)  is found by assuming 8 and A to have 
the form 

8 = kz-SZt+8, (z -c t ) ,  A = A(z-c t ) ,  (2.13a, b )  

so that, from (2 .2) ,  m and w also depend only on the combination z-ct .  Then k ,  w ,  
and A are steady in a frame of reference moving with the phase velocity c of the 
background inertial waves. Because m is a function of z - c t ,  (2.3) reduces to 

w - cm = G? = constant, (2.14) 

where i2 is the absolute frequency of the short waves in the inertial-wave frame. 
Likewise (2.13b) simplifies (2 .6)  to 

(c , -c )A = constant, (2.15) 

where cg is the z-component of c,. Much of our subsequent discussion is based on the 
fact that G? in (2.14) is constant on a test-wave trajectory. 

2.2. Changes in vertical wavenumber as a function of z-ct 
If we adopt (2.11) as a specific model of the background velocity, then it is 
straightforward to contour SZ defined in (2.14) as a function of m and 6 = b ( z - c t ) / 2 ~  
(figure 1 ) .  Because i.2 is constant, a test wave released at  any point in the (m, E)-plane 
remains on its initial a-contour. The immediate visual impression from figure 1 is 
that there are two types of initial conditions. 

First, there are trajectories such as AA’ and BB’. These test waves propagate freely 
through the background wave and pass through all phase positions. Thus the test 
wave on AA’ has a positive group velocity which is always less than c .  Consequently, 
it is repeatedly overtaken by upward-moving background crests. By contrast, the 
test wave on BB’ has a positive group velocity which is always greater than c .  
Consequently, this test wave repeatedly overtakes upward-moving background 
crests. Of course, test waves with positive wavenumbers (e.g. CC’) have negative 
group velocities and move downwards through the background wave. 

Second, there are trajectories such as DD’ in figure 1. These test waves are 
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FIQURE 1. Contours of constant Q in (m,g)-space. m, is the resonant wavenumber at which (1.1) 
is satisfied. The horizontal dashed lines denote the phase positions where u = 0. The velocity of 
the inertial current as a function of the phase is shown at the right; N/f  = 75, b / k  = 2.0 and 
J = (N/bu,)g = 25. The R-contours are computed using the mid-frequency approximation (2.19), 
except for those contours that closely straddle and cross the m = 0 axis. (These contours are 
computed using a high-frequency approximation for 5.) Note that the curves AA' and BB' have 
the same value of Q. The test waves move along the Q-contours in the direction shown by the arrows. 

'blocked' when the background velocity exceeds a certain value Ub. Thus, in the 
figure, a test wave on the curve DD' is confined to the region where background 
velocities are negative, i.e. for this particular wave ub = 0. The contour for which 
u, = 0 will be referred to as Q,. These test waves have cg > c when m > m, and cg < c 
when rn < m,. Thus on the right-hand portion of their orbit in figure 1 ,  they overtake 
background-wave crests while on the left-hand portion they are overtaken. This is 
most clearly illustrated in the ( z ,  t)-trajectory shown in figure 2. The turning points 
are caustics and occur at m = m, where ( 1 . 1 )  is satisfied. Equation (2.15) suggests 
that the action density is infinite at this resonant wavenumber but this is an 
unphysical singularity of ray theory which can be removed with a careful analysis 
of the caustic (Broutman 1986). 

Analytic solutions for m(z-cct), ub and m, can be obtained using a mid-frequency 
approximation, valid when f 2  6 (j2 6 N2. In  this approximation, the dispersion 
relation (2 .5)  reduces to 

(2.16) 

Substituting (2.16) into (2.14) leads to 

(2.17) 
1 

2c 
m(z - ct)  x - [ - (Q - uk) & [ (52 - ~ k ) ~  - 4Nkc]t] 

for m < 0. The positive root in (2.17) corresponds to m > m, and cg > c ,  and the 
negative root to rn < m, and cg < c .  At the turning point the two roots for m coalesce. 
Thus in the mid-frequency approximation 

m, x -(Fy, (2.18) 

(2.19) 
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FIQURE 2. The vertical position z of a test wave as a function of time, computed from a numerical 
integration of the ray equations. The dashed lines are the phase positions of the inertial wave where 
u = 0. This test wave is on the orbit DD’ in figure 1. 

2.3. Extent of the region of closed 8-contours 
The region of closed 52-contours is bounded by the separatrix EE’. The value of 52 
on this separatrix will be denoted by 8,. This region exists no matter how small the 
background velocity is, and its size increases as uo increases. 

To make this more precise it is convenient to analyse (2.14) using the following 
non-dimensional variables : 

m* = (&)k (2.20) 

(2.21) 

If we now apply the mid-frequency approximation (2.16), and use c x f/b, then 

Q, = lm*l-l-m* +p cos 2n[, (2.22) 

p = uo($)! (2.23) 

Further, it  is easily shown that the resonant wavenumber, where ( 1 . 1 )  applies, is at 
m, = - 1 .  

This non-dimensionalization, and the mid-frequency approximation, leaves only 
one non-dimensional parameter : p. Significantly, the only property of the test wave 
which affects p is its horizontal wavenumber k. It is argued below that p is a reliable 
estimate of the ability of the background shears to produce significant changes in the 
test-wave properties. Weak-interaction theory works in the limit of small p, i.e. for 
sufficiently long horizontal test wavelengths. 

This parameter is different from that advocated by Holloway (1980, 1982) as an 
a priori estimate of the validity of weak-interaction theory, which is 

v = Su/c,, (2.24) 

where cp  is the horizontal phase velocity of the test wave and Su is the change in 
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background velocity which occurs in a vertical wavelength of the test wave. Using 
6u x u,, b/m and cp x N / m  gives 

= {Richardson number}-+ 

= (k)". (2.25) 

The above provides a convenient way of estimating ,u : oceanic Richardson numbers 
for inertial waves are order one, so 

y x ey (2.26) 

and if N / f  = 75 while b = 2x/200m, then 

2R 
p = 8.7 if k = - 

2oom' 

2x 
p = 3.9 if k = - 

1000m' 

2R 
y = 1.7 if k =- 

5000m. 

Hence, realistic values of ,u are order one or larger. 
Now from (2.22) one can easily show that the value of 52, on the separatrix is 

sz,, = 2+y .  (2.27) 

The size of the closed-contour region can be estimated by noting that the separatrix 
passes through the points 

(m,,f;) = ( -1&(2p)4+)  if p -4 1,  (2.28) 

(m,,f;) = ( - (2+2p) f1 ,k )  if ,u B 1. (2.29) 

If p is small, the maximum width of the closed-contour region is proportional to 
pi 4 1. Thus Sm/m = O(y4) for the test waves in the closed-contour region. The test 
waves outside have much smaller changes in wavenumber: Sm/m = O(y) .  Thus, as 
suggested by the discussion surrounding ( l . l ) ,  when y -4 1, wavenumbers near m, 
interact most strongly, but still weakly, with the background. 

If p is large, the width of the closed-contour region is roughly 2(1 +y ) .  In this 
realistic limit there are large fractional changes in wavenumber: 0(4( 1 +,u)~) 9 1. The 
region of closed contours is very large and is no longer centred on m,. Most 
importantly, there is a broad range of wavenumbers, both inside and outside the 
separatrix, that interact strongly with the background. It is not possible to give a 
simple condition, analogous to m = m,, which distinguishes strongly interacting test 
waves. 

Finally, we emphasize that because of the simple form of the background velocity, 
all of the wavenumber changes discussed above are periodic. Permanent changes in 
wavenumber, which are indicative of transport through wavenumber space, occur 
when the background shear field is modulated and localized ($3). 

12 PLM 166 
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3. Interaction with a group of inertial waves 
In the previous section we obtained solutions of the ray equations by assuming 

that the (z,t)-dependence of the background current had the form z-ct. Thus for 
instance in figures 1 and 2 we confined our attention to the infinite wavetrain in (2.1 1).  
We now examine a localized near-inertial wave packet that is modulated by an 
envelope which travels at the group velocity of the near-inertial wave. In this case 
the background velocity is no longer steady in the inertial-wave frame because the 
phase velocity of the near-inertial wave differs from its group velocity. (In fact they 
have opposite signs.) 

We consider a packet of near-inertial waves and replace (2.11) with 

u = u,g(z-at){cosb(z-ct), -sinb(z-ct), O } .  (3.1) 

The envelope is described by the function g and moves with the vertical group velocity 
a of the near-inertial waves. (If c is positive, a is negative.) 

In  the inertial-wave frame, the phase propagation of the near-inertial wave is 
brought to rest; however, the movement of the envelope is not stopped, so in this 
reference frame u varies with time. The time dependence gives rise to changes in Q 
which can be computed from the ray equation 

where 

-= d&! k e + c g ) ,  
dt 

d a a;a 
dt at amaz 
_ -  --+--, 

For g we use the Gaussian profile 
= e-(z/zL)* 

(3.3) 

(3.4) 

which has unit amplitude at the packet centre z = 0 and vanishes as z+& 03. We 
have set a = 0, consistent with an infinite horizontal wavelength and intrinsic 
frequency equalling f. The factor 2L, where L = 2 z / b ,  yields a slowly varying 
envelope containing about six or seven crests at  any one time. The velocity u/uo at 
the time t = 0 is plotted in figure 3. The minimum Richardson number of the packet 
is defmed by 

J = (N/bu,)'. (3.5) 

Throughout this section, N / f  is set to 75 and b / k  to 2. 
The following results are produced by numerically integrating the ray equations 

dz 34 dm au 
dt - %' dt a2 
_ -  _ -  - - k - .  (3.6a, b)  

Unless otherwise stated, the ray integrations begin where lu/u,l = 0.0001 (or 
z x - 6.1 L ) ,  so the test wave and the near-inertial packet are initially well separated. 
The integrations continue until the test wave emerges from the other side of the 
near-inertial packet. 

Example 1 : weak shears, Ji = 100 and y = 0.06 
Although near-inertial waves in the ocean generally produce shears that are strong 
enough to give minimum Richardson numbers of order unity, we shall first describe 
the case in which the inertial current is weak and has very large Richardson number, 
with Ji = 100. A weak current is an essential assumption of the weak-interaction 
theory, so we can compare the present results with induced diffusion to see if the two 
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FIGURE 3. The profile at t = 0 of the s-component of the inertial current used in the computations 
of $3. The inertial packet is horizontally homogeneous, with u/uo = g ( z )  cosb(z-ct) ,  L = 2 x / b ,  
T = 27t/f, and a Gaussian envelope of the form g(z )  = e-(r'zL)'. 

agree qualitatively. (They cannot of course agree quantitatively.) In  fact, if weak- 
interaction theory is to have any practical relevance to the problem at hand, it should 
do so here: rewriting (3.5) as 

(3.7) 
N c  

O -  f Ji 

and using N/f  = 100, c = 100 m/day (cf. Pinkel 1983), and J4 = 100 gives a value for 
u,, of only 1 mm/s! 

Figure 4 shows the time variation in m/k  for four test waves with initial values 
m / k  = -8, - 12.3, - 15, - 17. The value of m,/k, approximately - 12.3 for N/f  = 75 
and b / k  = 2,  is indicated by the dashed line in the figure. Each time the test wave 
satisfies the resonance condition (1.1) the m / k  curve crosses this line. In  each 
integration Q remains within a few percent of its initial value. 

The test wave that starts with m = m, satisfies (1 .1)  a t  t = 0. This is equivalent 
to the resonant-triad condition of weak-interaction theory, in the induced-diffusion 
limit. This test wave undergoes larger fluctuations in m/k than the test waves that 
start with m/k  = -8 and rnlk = - 17, neither of which ever satisfy condition (1.1). 
The largest changes in wavenumber, however, occur for the test wave with 
m / k  = - 15 initially, which satisfies (1 .1)  where u/uo x 0.83, near the centre of the 
inertial packet. 

According to weak-interaction theory there can be an appreciable interaction when, 
initially, m is slightly different from mr and cg is slightly different from c .  This is 
because a background wave with a small but finite amplitude and a slowly varying 
envelope implies a resonance band that is slightly broadened from a pure line. In  bur 
model, the region of closed Q-contours (e.g. figure 1)  identifies the most sizable 
interaction. More specifically, as will be demonstrated, test waves that orbit the 
outermost fringes of the closed contours have the greatest potential for the largest 
permanent change. Well within the closed-contour region, in the middle of the 
resonance band of weak-interaction theory, we often find minimal interaction 
because, as explained later, such test waves become securely trapped near the trough 
of the inertial wave. These different effects are much more pronounced in the 
following example. 

u - _ _  

Example 2 : strong shears, Ji = 2 and p = 3.06 
We next consider an example in which the inertial shear is increased to a strength 
more representative of values measured in the ocean. For Ji = 2 and b / k  = 2 the test 
wave pictured in figure 5 ( a ) ,  with cg(t  = 0) x 22c, is among the fastest to be trapped 

12-2 



350 D. Broutmun and W. R. Young 

11 T 

0 5 10 15 20 

m 
- -10 k 

- 15 

-20 L 
FIGURE 4. A comparison of the variations in mlk along the ray paths of four test waves. The results 
pictured here are for example 1 of $3  in the text. The horizontal axis is the time in inertial periods, 
with T = %/j. The dashed line is the resonant wavenumber mJk.  

by the inertial wave; the test wave in figure 5 (b), with cg(t = 0) x 0.12c, is among the 
slowest. Much smaller oscillations in wavenumber result when cg(t = 0) = c, aa 
illustrated by figures 5 (c, d,  e) for three different initial positions of the test wave. 

The magnitude of the wavenumber fluctuations experienced by a test wave 
depends on where, relative to the inertial wave, the test wave satisfies cg = c and 
becomes trapped. The test waves in figures 5 (a, b) require comparatively large inertial 
currents in order to refract to cg = c and m = m,. Thus trapping occurs only toward 
the centre of the inertial packet, near a local maximum in u. While trapped, these 
test waves propagate through most of the phases of the inertial wave, analogous to 
a trajectory just inside the 52, contour of figure 1. Refraction then produces relatively 
large changes in wavenumber. 

Initially, the test waves in figures 5 (c, d, e) meet the condition cg = c at u = 0. Upon 
entering the inertial packet, these test waves are quickly trapped by very weak 
inertial shears to depths where u < 0. The ray path of the test wave then oscillates 
about a single inertial-wave trough, where the trough is defined as a depth at  which 
cosb(z-ct) = - 1. As the test wave propagates toward the centre of the inertial 
packet, the ray path remains trapped about this same inertial trough, and the weak 
shear required for trapping (and satisfying cg = c) is encountered by the test wave 
at depths which approach the trough itself. In (m, &)-space, as in figure 1, the test 
wave then orbits a trajectory that lies well within the 52, contour. 

Thus test waves initially satisfying cg = c avoid strong refraction by settling into 
an inertial trough soon after they reach the inertial packet. They then ride through 
the inertial packet (at cg x c) in phase with this trough and separated from regions 
of high inertial shear. While the test wave is trapped in regions where u < 0, it follows 
from (3.2) that its value of 52 decreases when the test wave is below the centre of 
the inertial packet and increases when the test wave is above the packet centre (figures 
5c, d, e). 

The wavenumber fluctuations in figure 5 (d) are comparatively small because the 
test wave is initially positioned exactly on the trough of the inertial wave; the 
wavenumber fluctuations in figure 5(e) are exceptionally large (for cg(t = 0) = c) 
because the initial position of the test wave is near the inertial crest (cos b(z-ct) = l), 
at a depth where au/& and dm/dt initially vanish. A test wave placed in this position 
can advance slightly farther into the inertial packet before refracting toward the 
inertial trough. 
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FIQURE 5. Variations in m/k and l2 aa a function of time in inertial periods along the ray path of 
the test waves described in example 2 of $3. The initial values of mlk are -2.62 and -35.0 in 
(a) and (a) respectively. In (c, d, e) the initial wavenumber is m = m,. The initial depths and times 
a r e ( a , b , c ) z = - 6 . 1 L , t = O , ( d )  -6.5L,Oand(e) -6.lL,0.832’. 

These results provide a possible explanation for the failure of weak-interaction 
theory, whose prediction of the effect of long waves on short waves is the ‘induced 
diffusion’ of the latter in wavenumber space. The effect relied on to produce the 
diffusion is the resonance of the phase velocity of the long wave and the group velocity 
of the short wave. As examples 1 and 2 indicate, the conditions under which this 
phase-group resonance are important in our two-component model are considerably 
restricted and quite outside the range of conditions normally encountered in the 
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ocean. Although we have not considered random-phase inertial currents, which are 
essential for induced diffusion, the randomness of phase cannot change the limitation 
of weak-interaction theory in which the tuning of resonant triads is accurate to some 
small E .  This excludes triads (for two approximately equal values of k) in which cg 
is not close to c. 

In the following subsection we show that a large and systematic net decrease in 
the magnitude of the vertical wavenumber of the test waves occurs in most 
encounters with a near-inertial packet when, initially, cg 6 c and hence when the 
resonance condition (1 . l )  is nowhere near satisfied. 

3.1. Permanent changes 

Permanent changes in m can be brought about through a net change in 52; but our 
simulations indicate that 52 can be relatively constant even when there are dramatic 
changes in m. It is helpful, therefore, to consider the hypothetical example in figure 6 
in which 52 is assumed to be constant along the ray trajectory. 

In figure 6 we assign one plot of the type in figure 1 to each of four depths along 
the ray trajectory of the test wave as i t  traverses the near-inertial packet. In  the 
inertial-wave frame these depths are labelled where 6 = b(z-ct)/Bn. Plots of 
the local inertial velocity u/uo a t  each depth are also shown. 

At the depth 6, the test wave, propagating upwards in the inertial-wave frame, 
encounters the lower edge of the near-inertial packet. It has 52 = a, and initially 
m > m,. (Note that m and m, are negative.) The test wave therefore moves in the 
direction shown by the arrow along the 52, curve to the right of m = m, and to the 
right of the closed SZ-contours. (Since at a fixed depth SZ reaches a minimum at 
m = m,, a consequence of (l . l) ,  another 52, curve lies to the left of m = m, and, at 
6 = El, to the left of the closed-contour region.) 

As the test wave moves closer to the centre of the near-inertial packet, the region 
of the closed contours grows. A t  the depth 6, the 52, contours pass across the saddle 
point to form the edge of the closed-contour areas. The test wave is now able to move 
along the 52, contour to values of m < m,. For each complete circuit around the 52, 
curve, (1.1) is satisfied twice. 

At  the packet centre (6 = E3), the closed-contour region covers the widest range 
of wavenumbers. Above the packet centre this region shrinks again. Eventually the 
SZ, contours become disjoint (E3 < 6 < 6,).  If m < m, at the time the SZ, contour 
separates into two parts, then the test wave will emerge from the inertial packet at 
a larger Iml than it had initially, moving downward in the wave frame, as shown by 
the arrow on the 52, contour in the uppermost plot. 

The largest permanent changes are a consequence of the dispersion relation 
permitting two wavenumber solutions for each value of Q. The two solutions are given 
by (2.17) in the mid-frequency approximation. Test waves satisfying cg = c somewhere 
in the inertial packet can pass from one wavenumber root to the other, as illustrated 
by figure 6. 

As the test wave orbits a closed 52-contour, it spends more time in the wavenumber 
range m < m, than in the range m > m,. In figure 2, for instance, the test wave has 
cg < c more than three times as long as cg > c.  This would seem to indicate that the 
test waves are most likely to emerge from the inertial packet with m < m, and cg < c .  
In  fact, the opposite is true, especially for strong shears. 

Before discussing why this is so, consider the results in figure 7, which shows ray 
trajectories for six initial values of m/k and five different starting times. Along each 
ray trajectory, (1  . l )  is satisfied a t  least once. Recall that the near-inertial packet, with 
J = 4 in this example, is centred at z = 0. 
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FIQURE 6. A plot of Sa-contours in (m, [)-space, as in figure 1, is here assigned to four depths across 
a near-inertial packet. The figure is meant to illustrate with a hypothetical example how a test wave 
encountering a near-inertial packet can experience a net change in wavenumber while conserving 
its value of SZ. The near-inertial packet is centred at .& and has a lower edge near tl, and an upper 
edge near &. The values of Sa are computed using Ji = 100,4,2, 100 at respectively, and using 
u given in (2.11). The profiles of u/uo for the local value of Ji are shown to the right, where uo is 
the maximum velocity at the packet centre. The test wave has Sa = at. These contours are labelled 
in the lower panel. I n  the other panels they are marked by arrows, which indicate the direction 
of propagation of the test-wave group in the inertial-wave frame. 
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FIGURE 7. Ray trajectories for test waves propagating through a near-inertial packet. For each 
initial wavenumber there are five starting times spaced evenly over several inertial periods. Initial 
valuesare(a)m/k = -3;(b)m/k = -6;(c)m = m,;(d)m/k = -15;(e)m/k = -25;(f)m/k = -35. 

Test waves initially satisfying (1.11 are shown in the figure 7 (c). In this case the 
deflections in the ray path are relatively small in magnitude, especially with regard 
to the net effect of the encounter with the inertial packet. Much larger deflections 
in the ray path and much larger fluctuations in m occur when cg and c differ by an 
order of magnitude. For example, the initial values of m/k = - 3 (figure 7 (a))  and 
m/k = -35 (figure 7 ( f ) )  correspond to initial group velocities of cg x 17c and 
cg x 0 . 1 2 ~  respectively. Yet the refraction of these test waves can be seen to be 
comparatively large. Unlike the initially resonant test waves, these test waves are 
not trapped near an inertial-wave trough, but rather they propagate through more 
(but not all) of the phases of the inertial wave. 

Moreover, in some cases there is a large permanent change in the direction of the 
ray path. This net change is most likely to occur when cg 4 c initially, as in the 
examples with the initial values m/k = - 25 (cg x 0 .24~)  and m/k = - 35 (cg x 0.12~). 
The reason for this becomes clear when contours of the inertial velocity are added 
to the plot of the ray trajectory. In figure 8 the ray trajectories are the same as those 
plotted in figure 7 (a).  The dashed lines mark the position of the turning points, where 
(1 .1)  is satisfied and where u = ub. The ub contours are calculated from the initial 
value of Q using (2.19). 

Each time a ray trajectory encounters a u,, contour, it experiences ti relatively sharp 
change in direction. When the ray is almost horizontal, the wavenumber is large and 
the group velocity is small. The short wave is thus unlikely to escape from the inertial 
packet without first encountering another U b  contour, a t  which it would be refracted 
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FIQURE 8. The ray trajectories in figure 7 ( a ) ,  with initial value mlk = -3, are redrawn here with 
the dashed curves showing the inertial phmes where u = ub, the velocity at which (1.1) is satisfied. 
The position of the ub contours is approximate because ub is computed using the initial value of 
52 of the test wave and the mid-frequency estimate (2.19). For this example ub z 0 . 6 9 ~ ~ .  Note that 
the ray path is relatively straight until it  approaches one of the ub contours. 

to low wavenumber and fast group velocity. The more horizontal the ray trajectory 
becomes, the stronger the tendency for test waves to emerge from the inertial packet 
with (m( < lmrl and cg > c. 

Note that these results suggest that strong interactions transport wave properties 
to lower wavenumbers, i.e. larger vertical scales. This is entirely contrary to the 
predictions of weak-interaction theory (viz. action is transported to high wavenum- 
bers). For the idealized velocity fields discussed here, the physical mechanism is 
succinctly summarized in figure 8, which shows simply that low vertical wavenumbers 
have large vertical group velocities and consequently have the highest probability 
of escaping from spatially compact regions of high background shear. This effect is 
a simple and robust one, and is likely to apply to more complicated background fields. 

4. Changes in energy 
Permanent changes also occur in the intrinsic energy density E of the test waves, 

defined in (2.9), and in its integral j E d V, taken over a volume whose boundaries move 
at the local value of (c,+u). 

To determine the permanent change in the energy of the test wave, we designate 
the initial and final values of the test-wave parameters by the subscripts 1 and 2 
respectively. These initial and final values occur away from the inertial packet, where 
the background medium is uniform and stationary. Then, because j A d V ,  the 
integrated action density, remains constant along the ray 

Since, as explained in $3, net increases in 4 are more likely to occur than net decreases, 
test-wave groups have a systematic tendency to increase their value of j E d V. This 
gain in energy of the test wave can only come at the expense of the inertial wavefield. 
Consequently, the interaction described here damps the downward-propagating 
group of inertial waves. A complete theoretical description of this damping mechanism 
requires a careful analysis correct to second order in test-wave amplitude. 
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FIGURE 9. (a) The ray trajectories for test waves propagating through an inertial-wave packet 
containing upward- and downward-propagating inertial waves. Each near-inertial wave has a 
velocity of the form given by (3.1) and d = 2. The component with upward-moving phases has 
b / k  = 2 ; the downward-propagating component has b / k  = 4. The packet is modulated by the single 
Gaussian envelope g given in (3.4). Dashed contours are of ub rz 0 . 4 1 ~ ~  and are computed from the 
initial value of R of the test waves using (2.19). They indicate the approximate time and depths 
at which the test waves and the single progressive inertial wave with upward-moving phases eatisfy 
(1.1). (b , c )  The variations in m/k  and D along the test trajectory in (a) that reaches z 2L at 
t = 60T. At t = 0 on each ray path, m/k = -35 and z = -6.OL. 

Amplitude calculations are explored further in Broutman (1986), where an example 
is reported in which there is a large net increase in I E d V  but a net decrease in E 
and A because the group of test waves occupies a larger volume after interacting with 
the near-inertial packet. 

5. Conclusion 
The most surprising result to emerge from this study is the tendency for a 
downward-propagating, near-inertial-wave group to permanently decrease the 
magnitude of the vertical wavenumber of upward-propagating short-wave groups. 
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This is clear from figure 8 and from many other examples that we have run: most 
test waves with small wavenumbers pass through the packet without any marked 
change, while most of those with initially high wavenumbers emerge with much 
smaller wavenumbers and faster group velocities. As already indicated in figure 8 
this is because, when the wavenumber is small, the group velocity is large and the 
test wave has the greatest probability of escaping from the background shear field. 

Is this mechanism operating in the ocean? Because it relies on the presence of 
groups of inertial waves, such as are found in the upper ocean, we suggest that the 
upper ocean is the most likely site. For example, Pinkel’s (1983) Doppler sonar 
observations suggest that much of the shear in the upper 700 m of the ocean can be 
attributed to a few identifiable groups of downward-propagating near-inertial waves. 

It might be objected that actual background fields, even in the upper ocean, are 
probably not as narrowband as those used here. However, FlattB, Henyey BE Wright 
(1985) have remarked that in their numerical simulations, where the background is 
constructed from a Garrett-Munk spectrum using a random phase approximation, 
there is a clear statistical tendency for the vertical wavenumber to decrease. This 
independent result is encouraging, but without a detailed study of actual events it 
is difficult to see whether this decrease can indeed be attributed to the mechanism 
in figure 8. However our impression is that the process is robust, in that it is not 
disrupted if the background is made more complex. 

Thus, for example, in figure 9 we show five test waves propagating through a packet 
of near-inertial waves containing upward- and downward-propagating components 
and modulated by a stationary Gaussian envelope. Clearly 52 is not even approximately 
constant in this case, and consequently the contours of u,,, based on the theory of 
82, are no longer a reliable guide to the position of the turning points. Nonetheless, 
figure 9 shows that the conversion from high to low wavenumbers still occurs. This 
example, as well as several others we have performed, suggests that spatial 
compactness of the high-shear region is more essential than a single harmonic 
structure within it. The time dependence of the background flow is also important 
for this phenomenon; it removes the constraint that the absolute frequency 4 + ku 
be constant along the ray. In a steady horizontal shear flow this constraint forces 
4 to return to the same value whenever u = 0, preventing permanent changes of the 
type described here. The time dependence of the oscillating inertial current also 
eliminates critical layers, which would otherwise be important for short-wave 
dynamics. 
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